SOLAR REALITIES

7-20-21 (revision 8-15-21)

Photo Credit
Part 1 - Summary of Solar Energy Concerns

Let’s step back, put aside the marketing hype, and look at some of the key consequences of promoting and subsidizing industrial solar energy:

a) solar projects rarely have **meaningful state rules or regulations** to abide by (*note: a similar situation also exists for another current political favorite: wind energy)*;

b) solar lobbyists often attempt to further **handicap local communities** from enacting meaningful regulations, by forcing an expedited approval process;

c) solar projects require 100% backup, so **we must pay for twice the energy sources**;

d) solar projects require 100% backup, which is typically from gas, so that needs to be factored in when discussing cost, environmental impact, CO2 reduction, etc.;

e) solar facilities are likely a **net energy sink** (*e.g.*, see this [study](#));

f) when a comprehensive and objective financial analysis is done, solar is **5x± the cost of conventional electrical energy sources** (*e.g.*, [here](#), [here](#), [here](#), [here](#) & [here](#));

g) Despite states shelling out **Billions of dollars to benefit the solar industry**, no scientific, thorough, objective studies have shown that solar is a net benefit.

h) See this 2021 Study: Built Solar Facilities are Chronically Underperforming;

i) solar has a high potential for **substantial environmental harm**, like polluting aquifers with **carcinogens** (*e.g.*, [here](#), [here](#), [here](#), [here](#) and [here](#)) [*also see Part 2*];

j) solar will likely **reduce nearby home values** (*e.g.*, [here](#), [here](#), and [here](#));

k) solar can take prime farmland out of production (*e.g.*, [here](#)), which results in loss of jobs, loss of farm equipment & supplies sold, and a loss of consumer produce;

l) a solar facilities with batteries can be a major hazard (*e.g.*, [here](#) and [here](#));

m) solar facilities can be problematic to nearby airports (*e.g.*, [FAA](#), [study](#) and [study](#));

n) solar results in an **enormous toxic disposal problem** for the state (*e.g.*, [here](#), [here](#), [here](#), and [here](#)) — *who will pay for that and where are the state rules about this?*

o) Solar has no scientifically-proven consequential net reduction of climate change; in fact, some studies (*e.g.*, [here](#), [here](#), [here](#), and [here](#)) conclude that solar facilities might make climate change **worse**; and

p) going solar likely **benefits Communist China** (*e.g.*, [here](#) and [here](#)).

Some additional sample relevant information about solar energy:

- [Uncle Sam’s Solar Racket — a Cesspool of Waste and Corruption](#)
- [Wind and Solar Are Intermittent and Incapable of Meeting Our Needs](#)
- [Why Wind and Solar Energy are Doomed to Failure](#)
- [Surprising Disadvantages of Using Solar Energy](#)
- [Leaders Hopelessly Misguided on Wind and Solar Power](#)
- [Study: The More Solar on the Grid, the Less Value it Has](#)
- [Cost comparison: actual Nuclear vs Solar facilities](#)
Part 2 - Solar Panel Toxicity Overview

When potential solar project host communities ask solar developers what toxic materials are in their solar panels, they typically say that they are not aware of any.

Although that may seem evasive, it may be an accurate response as:
- a) most solar panels come from China,
- b) China does not have anywhere near the environmental concern that we do, and
- c) Chinese suppliers are unlikely to divulge negative information about their products.

The takeaway is: buyer beware. In other words, potential host communities for industrial solar facilities should be aware of what we do know — and then act accordingly to fully protect their community.

So what DO we know? We know that these are some of the toxic (some carcinogenic) chemicals that have been identified as likely being in solar panels (click on the links to get an idea of what some of the adverse health consequences are):

- Per- and Polyfluoroalkyl Substances (PFAs)
- Polytetrafluoroethylene (PTFE)
- Fluorinated Ethylene (FEP)
- Cadmium Telluride
- Copper Indium Selenide
- Cadmium Gallium diselenide
- Copper Indium Gallium diselenide
- Silicon Tetrachloride
- Hexafluoroethane
- Polyvinyl Fluoride

Also, here is a basic explanation of the silicon manufacturing part of solar panels. The following are some additional toxic chemicals that have been identified as possibly being involved in the fabrication of solar panels, which might end up in the finished product:

<table>
<thead>
<tr>
<th>Toxic Chemical</th>
<th>Toxic Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen chloride</td>
<td>Arsine gas</td>
</tr>
<tr>
<td>Silicon tetrachloride</td>
<td>Trichlorosilane gas</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>Silane gas</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>Nitric acid</td>
<td>Sulfur hexafluoride</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Lead</td>
</tr>
</tbody>
</table>
Now that they know this about solar panel toxicity, **what do conscientious states and communities do to protect their citizens and eco-systems from these life-threatening chemicals?**

With solar, there are two major concerns with these toxic materials:

a) Over the 20± year estimated life of solar panels, how do states and local communities make sure that these chemicals will not migrate from solar panels into soils and local aquifers? *and*

b) How will solar panels with these materials be safely disposed of at the end of their useful life, and who will pay for it? (Note: these panels will not biodegrade, plus it is extremely difficult to recycle very much of these panels.)

The answers to both questions *should* primarily be found in **state laws**, and secondarily in local ordinances.

It is unconscionable to have state legislators **mandate** solar projects (e.g., via **Renewable Portfolio Standards** (RPS) legislation), yet not likewise pass accompanying appropriate legislation to protect their citizens (and environment) from the well-documented toxic threats that can result from their RPS.

Additionally, for state legislators to throw the responsibility of protecting citizens and the environment onto the backs of local representatives, is beyond unreasonable. In North Carolina, for example, what sense does it make to require that a hundred counties must get educated on the impacts of these toxic materials, and then write (and pass a) local ordinance that tries to address that threat to their community?

For some other relevant information about industrial solar energy, go [here](#), and also [here](#) (and search over “solar”).

For any corrections or suggestions for improvement, please contact the undersigned.

John Droz, jr physicist North Carolina “aaprjohn” at “northnet” dot “org”